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ABSTRACT 

The aim of this work is to provide a simulation framework for the generation of 

anthropomorphic breast phantoms based on the simulation of breast anatomical structures. Three-

dimensional breast software phantoms are an important research tool that can help in developing 

new imaging techniques and devices for the diagnosis of breast cancer. After skin cancer, breast 

cancer is the most prevalent cancer in women in the United States. Breast cancer can occur in 

both men and women, but it is far more common in women. Breast imaging system based 

screening can reduce the mortality rate of breast cancer by improving early detection. 

Nevertheless, thousands of women are wrongly diagnosed each year. The improvement of breast 

imaging is an ongoing research. One of the most difficult aspects of this research is to get the 

human subject data because of the cost, time, or patient risk of repeated use of ionizing radiation. 

Software phantoms can be used in virtual clinical trials, which allow for an alternative pre-

clinical evaluation. 

  Three-dimensional breast software phantoms have become an important tool used in a 

variety of fields, including design and pre-clinical testing of novel medical imaging techniques, 

X-ray dose assessment, and digital pathology. In these phantoms, elements of breast anatomy are 

described as a set of geometrical shapes, governed by a maximum aposteriori probability (MAP) 

classifier for a mixture of three-dimensional Gaussian distributions. The phantom geometry is 
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fully determined by a set of parameters including the distribution parameters, nominal thickness 

of the simulated breast ligaments and nominal skin thickness. For each particular set of such 

parameters, a histogram of simulated breast compartment sizes is compared with the histogram 

estimated by manual segmentation of reconstructed CT images of a mastectomy specimen 

corresponding to a healthy breast (the CT images were acquired from the University of 

Pennsylvania and the comparison was performed at the MEDIS Lab at Delaware State 

University). The comparison was performed using the Kullback-Leibler divergence (KL), 

Kolmogorov-Smirnov (KS) distance, and Parameterized Distribution Distance (PDD). 

To improve realism of simulated phantoms, in the past, phantom parameters were 

optimized using an exhaustive search within a discretized parameter space. This was done by 

creating an experimental design using the lower and upper bounds on the parameters. Since this 

was based on discretizing a continuous search parameter space, we realized that the optimization 

could be improved by using the continuous parameter space with the evolutionary optimization 

algorithm. 

In this work, we utilized a genetic algorithm (GA) for the optimization of phantom 

parameters over the continuous parameter space whose initialization was guided by the best 

solutions obtained from prior work. The proposed approach works in the following way. In each 

iteration of the GA, the algorithm provides a set of parameters corresponding to a population of 

potential phantoms to an open source software provided by Dr. Predrag R. Bakic and Dr. Andrew 

D. Maidment of the Department of Radiology, the University of Pennsylvania. The software then 

simulates each phantom.  This software then calculates the value of the fitness function (e.g., 

based on KL or KS distance) for each member of the population. The genetic algorithm uses the 

fitness function values to produce the next generation of GA. 
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We have successfully developed a set of phantoms with the highest values of the fitness 

function obtained during the optimization process, all of which combine realistic anatomy with 

the flexibility of mathematical modeling. Different types of parameters that affect the simulated 

phantoms have been analyzed thoroughly in the proposed work. These phantoms can be used 

effectively in imaging research to develop and upgrade new imaging methods and devices in 

order to detect and prevent the breast cancer. 
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CHAPTER 1: INTRODUCTION  

SECTION 1.1: PROBLEM STATEMENT 

Cancer is the name given to a collection of related diseases. In all types of cancer, some of 

the body’s cells begin to divide without stopping and spread into surrounding tissues. Cancer can 

start almost anywhere in the human body. Cancer is made up of trillions of cells. Human cells 

grow and divide to form new cells as the body needs them. When cells grow old or become 

damaged, they die, and new cells take their place. When cancer develops, however, this orderly 

process breaks down. As cells become more and more abnormal, old or damaged cells survive 

when they should die, and new cells form when they are not needed. Then these extra cells can 

divide without stopping and may form growths, called tumors, and then they are named after the 

part of the body where the tumor originates. Malignant tumors spread to distant areas. This process 

is called metastasis (General Information : CANCER AID & RESEARCH FUND). 

About 1 in 8 U.S. women (about 12%) will develop invasive breast cancer over the course 

of her lifetime. A man’s lifetime risk of breast cancer is about 1 in 883. According to the American 

Cancer Society, in 2020, an estimated 276,480 new cases of invasive breast cancer will be expected 

to be diagnosed in women, and about 2,620 new cases of invasive breast cancer are expected to be 

diagnosed in men. About 42,690 women and 520 men in the U.S. are expected to die in 2020 from 

breast cancer, though death rates have been decreasing since 1989 (ACS, 2020).  Besides skin 

cancer, breast cancer is the most common cancer among women in the USA, although women 

under 50 have recently been experiencing decreases in breast cancer mortality rates. The key to 

reduce the high mortality rate of breast cancer is early detection and diagnosis. With the 

improvement in screening and treatment, death rates have decreased from 1.9% between 1988 and 
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2011 to 1.3% between 2011 and 2017 (ACS, 2019). These decreases are thought to be the result 

of treatment advances, earlier detection through screening, and increased awareness (ACS, 2019). 

SECTION 1.2: BREAST CANCER DIAGNOSIS 

Breast cancer can first manifest itself through such symptoms as lumps, rash, swelling of 

the skin, or itchy or inverted nipple. After discovery of any of these symptoms or abnormalities 

of the breast, breast cancer can be confirmed by a test such as mammogram, magnetic resonance 

imaging (MRI), or ultrasound. A mammogram is an imaging technique that uses low-dose X-ray 

to generate images of the breast to look for early signs of breast cancer. MRI is another imaging 

technique that uses high-powered magnetic fields, magnetic field gradients, and radio waves, to 

create images of the organs of the body. Ultrasound is an imaging technique that sends high-

frequency sound waves through the breast and converts them into images. But these techniques 

have several limitations. 

SECTION 1.3: IMPORTANCE AND USEFULNESS OF NEW IMAGING TOOLS 

In light of the limitations of current imaging techniques, it is necessary to continue to 

improve breast cancer imaging tools, to evaluate new techniques, and to compare different 

methods for cancer detection. The clinical trial is performed when a new future imaging 

technique is evaluated. Also, the new imaging system needs FDA approval. But these clinical 

trials are restricted by cost and duration. Thus, preclinical trials, also known as Virtual Clinical 

Trial (VCT), are used. In the United States and Canada, a total of 49,528 asymptomatic women 

participated as volunteers in a clinical trial for both digital and film mammography (Maidment, 

2014). The duration of the trial was 5 years and the cost was $26 million. A virtual clinical trial 

could be used as an alternative of such a clinical trial. Figure 1 depicts the components of a 
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process to simulate breast anatomy. This simulation pipeline was developed at the University of 

Pennsylvania (Maidment, 2014). A VCT simulates human anatomical structure, image 

acquisition, image processing, image statistical analysis and model observer (Maidment, 2014). 

 

 

 

 

 

 

 

The main objective of a VCT is the simulation of breast phantoms based on the breast 

anatomical structure. A breast phantom is a breast model that can be used to improve image 

quality and optimize imaging parameters to detect breast cancer. Such a model typically consists 

of breast surface, duct system and lobules, connective tissue, Cooper’s ligaments, blood vessel 

systems, as well as skin and breast abnormalities. Breast phantoms can be of different shapes, 

sizes, and structure. Phantoms can be physical or computerized. Phantoms are utilized to improve 

the image quality and optimize the imaging parameters that can support the novel imaging 

techniques. Physical phantoms are limited because they cannot represent different breast sizes, 

shapes and composition of the breast. It is difficult to simulate patient-specific physical phantoms  

(Li, Segars, Tourassi, Boone, & Dobbins III, 2009). On the other hand, it is very flexible to 

simulate any number of computerized phantoms because they are user defined models, and the 

Insert 

Lesions 

Simulate 

Image  

Acquisition 

Image 

Processing 

and Analysis 

Human/

Model 

Observer 

Simulate 

Breast 

Anatomy 

Figure 1. Block diagram of the VCT for simulation of breast anatomy and image statistical 

analysis (Imran, 2016). 
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user can control the anatomical variations in the breast without additional cost and processing 

time. 
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CHAPTER 2: BACKGROUND 

Three-dimensional computer simulated phantoms, created based on the structural 

distribution of the different types of breast tissues and the physical properties of those tissues, 

can be used for both qualitative and quantitative performance analysis of breast imaging systems. 

Accordingly, there is an acute need for as realistic simulated phantoms as possible. 

SECTION 2.1: BREAST ANATOMICAL STRUCTURE 

The female breast mainly consists of a large number of fat cells known as adipose tissue 

(Neira, Mays, & Hagness., 2017). The breast does not contain any muscle. The amount of fat 

determines the size of the breast. Compared to the male breast, the female breast is very complex. 

The adipose tissue spreads from the collarbone to the underarm and also through the middle of 

the ribcage (National Breast Cancer Foundation). Each of the female breasts also contains 15-20 

lobes of glandular tissue. The lobes are divided into smaller lobules that are the glands that 

produce milk. These lobes and lobules are connected through milk ducts. The milk ducts carry 

the milk to the nipple. Around the nipple, there is a small circular area known as areola. During 

nursing, the areola discharges fluid. Breast cancer usually starts to build up inside the breast 

structure, and is very common in the lobes, lobules, or milk ducts. Figure 2 shows how lobes, 

lobules, and milk ducts interact with one other in the female breast.  
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Figure 2. Lobes, Lobules, and Milk Ducts (National Breast Cancer Foundation). 

Adipose tissue consists of a group of ligaments, fibrous connective tissue, nerves, lymph 

vessels, lymph nodes, and blood vessels (National Breast Cancer Foundation). The lymph system 

composed of a group of lymph vessels and lymph nodes carries disease fighting cells.  

Cooper’s ligaments are the connective tissue in the breast that maintains the shape and 

configuration of the breast, and are named Sir Astley Cooper, an English surgeon and anatomist, 

who first performed qualitative analysis of the distribution and the shape of the adipose tissue 

compartments in the breast one hundred and seventy years ago (Pacifici). This connective tissue 

surrounds the lobules and the milk ducts. 
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Figure 3. Anatomical structure of a female breast (Breast Anatomy and Structure). 

A breast that does not have enough fat tissue will have lots of fibrous or glandular tissues. 

This type of breast is known as a dense breast. Women with dense breasts have a slightly higher 

chance of developing breast cancer, as opposed to women with breasts containing more fat 

tissues. In mammograms, dense tissue and the tumor both look white, so it is hard to distinguish 

them from each other. On the other hand, the fat tissue appears as black in a mammograph, so it 

is easier to identify the tumor in less dense breasts. Wolfe (Wolfe, 1976) predicted that there is a 

high risk of cancer for those women who have parenchymal pattern breasts. Parenchymal pattern 

defines the pattern of the dense tissues in the breast (Wolfe, 1976). Breast density can be inherited 

or derived genetically from one’s parents or ancestors. 



www.manaraa.com

8 

 

 

The Breast Imaging Reporting and Database Systems (BIRD) classifies breast density 

into four categories: 

Mostly fatty: When the breast has more fat tissue and less fibrous and glandular tissue 

that means any tumor can be easily shown in a mammogram. 

Scattered density: This type of breast has a bit of fat and has few areas of fibrous and 

glandular tissue. 

Consistent density: This type of breast has more areas of fibrous and glandular tissue that 

are scattered inside the breast. Accordingly, it would be difficult to identify a small tumor in this 

type of a breast during mammography. 

Extremely dense: This type of breasts has a lot of areas of fibrous and glandular tissue, 

which makes it more difficult to identify cancer cells in such a mammogram. 

SECTION 2.2: BREAST CANCER DIAGNOSIS 

Breast cancer can be diagnosed throughout various screening procedures. We can save 

lives by improving screening tests and treatment techniques. The screening techniques include 

ionizing radiation techniques and non-ionizing radiation techniques. Non-ionizing radiation does 

not generate enough energy to separate the molecular bonds and ionize the atoms. On the other 

hand, ionizing radiation provides enough energy to separate the bonds between molecules and 

ionize atoms. Ionizing breast imaging techniques such as mammograms, screen-film 

mammograms, or digital mammograms are most often used for breast cancer detection. Non-

ionizing breast imaging techniques include Magnetic Resonance Imaging (MRI), Thermography, 

Ultrasound, or Optical Imaging. 
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SECTION 2.2.1: IONIZING BREAST IMAGING TECHNIQUES 

Mammography is the most common screening method for breast cancer that gives the 

visualization of the internal structure of the breast. A German surgeon Albert Salomon, who 

worked at the Royal Surgical University Clinic in Berlin, is well known for the study of early 

mastectomies. In 1913, Salomon first observed radiological differences between cancerous and 

non-cancerous cysts. That is how the history of mammography started (Picard, 1998). But at that 

time mammography was limited. In 1960,  Robert Egan, at M. D. Anderson Hospital and Tumor 

Institute, in Houston, Texas,  defined a reproducible technique that utilized industrial film, which 

produced excellent breast imaging results for his first 1,000 patients (Bassett & Gold, 1988). 

During mammography, X-rays of each breast are taken from two different views. One is the 

Mediolateral Oblique (MLO) view, which is for side-to-side, and the other one is the Craniocaudal 

(CC) view, which is for top-to-bottom. In addition, breast compression is applied to reduce the 

thickness of the breast in order to produce better image quality, reduce the X-ray dose, and to 

better separate tissue (Dustler, et al., 2012). 

During the first step of mammography, the technologist will place each of the breasts onto 

a flat X-ray plate. Then, the compressor will push the breast down to flatten the tissue. This is done 

for two main reasons: first, compression ensures that the breast will remain still, and second, it 

prevents the blurring on the X-ray and that helps to produce high quality image. This is 

uncomfortable, but no one can get hurt during this procedure. The compression only lasts for 20-

30 seconds. Then the compression is repeated from different angles and another X-ray is taken. 

Thus, the radiologist can see the maximum amount of breast tissue as well as the lymph nodes in 

the breast area close to the underarm. The entire procedure is also repeated for the other breast. 

The radiologist then carefully examines the mammogram images and provides a report. 



www.manaraa.com

10 

 

 

Mammography screening requires a small amount of radiation dose and the risk is minimal. 

The radiation dose is calculated at 4 mGy (milligray) per breast (Heywang-Köbrunner, Hacker, & 

Sedlacek., 2011). Milligray is the radiation dose unit that is absorbed during mammography. But 

depending on the breast size and compression, the dose may be different. As the mammographic 

techniques are improving, the radiation dose is also decreasing. 

Digital mammograms are more beneficial for women who are under 50 years because these 

women tend to have more dense tissues than older women (Herndon, 2016). In digital 

mammography, X-rays are converted into an electronic picture, which is saved directly onto a 

computer. That way, the radiologist can see the images right away. When the images on a regular 

mammogram are not clear, then the computer can help the radiologist better see the images. 

Even though mammography is the most effective screening method for early detection of 

breast cancer, 20-26% of cancers are still missed, and approximately 70% of the biopsies 

performed are  deemed unimportant (Ikejimba, et al., 2017). According to the Food and Drug 

Administration (FDA), one of the major problems with mammography is that the 3D breast 

structure is superimposed onto a 2D image plane. 

The FDA has approved three types of mammography for breast screening. These are 

screen-film mammography, digital mammography, and digital breast tomosynthesis 

mammography. 

Screen-film mammography: Screen-film mammography uses X-ray equipment to record 

the image. X-rays are sent through the breast tissue. Dense tissue, which is connected to cancer, 

absorbs the X-rays and creates a white region on the film. Here, a breast is X-rayed from center 

to the side. This type of breast cancer screening is used for women over the age of 40 (Glick & 
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Ikejimba, 2018). The technician compresses the breast and takes images from different angles 

for each breast. In the image, breast tissue appears white and opaque, and fatty tissue appears 

darker and translucent.  

Digital mammography: Instead of using X-ray film, in digital mammography, a digital 

format is used to capture the X-ray images of the breast. This approach also delivers a lower dose 

of radiation (Glick S. , 2018). Digital mammograms are more accurate for women who have 

dense breast tissue and are also under 50 years of old (Köşüş, Köşüş, Duran, Simavlı, & Turhan, 

2010).  

Digital breast tomosynthesis (DBT): Digital breast tomosynthesis is a 3-dimensional  

(3-D) mammography, which allows tens of angular views of the breast, in a short angular range, 

with little compression of the breast. This technology constructs 3-D images of the breast by 

using multiple high-resolution X-rays. DBT is used in combination with a 2-D digital 

mammography image. Ziedses des Plantes was a pioneer in digital breast tomosynthesis (Plantes, 

1971). The FDA has approved digital breast tomosynthesis for breast cancer screening in 2011 

(ACS, 2019). Also in 2011, the first commercial DBT system was approved by the FDA to be 

used in the USA (Karellas, Lo, & Orton, 2008). According to the American Cancer Society, 

recent studies suggest that digital breast tomosynthesis may reduce false positives, which can 

improve cancer detection, because the technique slightly reduces breast compression while 

taking the images, and thus reduces a large amount of overlapped tissues (Sarno, Mettivier, & 

Russo, 2015). Having said that, DBT is a pseudo tomographic screening procedure, whereas a 

newer method, the breast Computed Tomography (bCT), is a true tomographic technique. During 

bCT screening, hundreds of X-ray images of each breast are taken from 360-degree angles. 

Although bCT provides even less breast compression, bCT is not yet approved by the FDA. 
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SECTION 2.2.2: NON-IONIZING BREAST IMAGING TECHNIQUES 

Non-Ionizing Breast Imaging techniques include: Breast Magnetic Resonance Imaging 

(MRI) (Saslow, et al., 2007), Thermography, Ultrasound, Automated Breast Ultrasound (ABUS), 

and Optical Imaging. 

Breast Magnetic Resonance Imaging: MRI, also known as Nuclear Magnetic Resonance 

Imaging, is a scanning technique that uses a powerful magnetic field, radio waves, and a 

computer, to create detailed images of the breast. Contrast-enhanced breast MRI uses a very high 

sensitivity tool that can detect cancer even in breasts that are very dense, which would not be 

easily possible in the mammogram (Bazzocchi, et al., 2006). Breast MRI is not suitable for most 

patients, however, because it is ten times more expensive than the mammogram, but it may be 

appropriate for high-risk patients.  

Thermography: In thermography, a thermal infrared camera is used to discover and record 

the temperature changes of the skin. When cancer grows in the cell, enormous blood vessel can 

be formed in the breast. This areas with a higher skin temperature can be clearly seen in infrared 

images. Unfortunately, this technique does not provide enough information to detect cancer. It 

can only mark a person for further investigation. 

Ultrasound: The ultrasound procedure uses a transducer that sends high frequency sound 

waves into the body and receives the responding signal. This is not an uncomfortable procedure. 

During the procedure, doctor keeps the transducer on the breast. Then, he or she moves the 

transducer to create clear images of the breast. Ultrasound is safer than other medical imaging 

procedures. It is also less expensive than other medical imaging options, but its test accuracy 

relies on the operator’s skill and training. 
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Automated Breast Ultrasound (ABUS): Automated Breast Ultrasound (developed by 

Siemens Healthcare, U-Systems Inc., and SonoCine) can be used as an alternative to the 

manually operated ultrasound. ABUS provides high frequency sound waves, which are sent to 

the target area in the breast to create 3-D volumetric image of the entire breast. These images are 

useful for women with breasts of high density. ABUS also takes less time for the exam as 

compared to the traditional Ultrasound. 

Optical Imaging: Optical imaging is an imaging technique that uses non-ionizing 

radiation such as visible, ultraviolet, and infrared light to produce images without causing any 

side effects by exciting the electrons. The technique provides light propagation inside the tissue 

components to estimate the optical properties. The optical imaging devices passes on light in the 

breast in the near-infrared range (NIR) which is up to several centimeters deep. Depending on 

the tissue components, the light is then absorbed and spread. Different tissue components have 

different absorbing and spreading characteristics. The detectors record the reaming light and then 

advanced computer algorithms regenerate the images. 

SECTION 2.3: ANTHROPOMORPHIC BREAST PHANTOMS 

In the field of medical imaging, a phantom is a specially designed object that is scanned 

or imaged to evaluate, analyze, and tune the performance of imaging devices in a similar manner 

to how human tissues and organs would act in that specific imaging modality. An 

anthropomorphic breast phantom is a three-dimensional (3D) computerized model which 

simulates breast tissue. A phantom can be used for image analysis or preclinical testing for early 

breast cancer screening. Computerized breast phantoms can be created using two different 

approaches: the mathematical approach and the voxelized approach (Li, Segars, Tourassi, Boone, 

& Dobbins III, 2009). Mathematical phantoms are developed based on varying the composition 
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of the breast and the voxelized phantoms are developed based on actual clinical imaging data. 

Mathematical phantoms are more flexible compared to voxelized phantoms, but their images are 

qualitatively unrealistic (Imran, 2016). The voxelized approach is more realistic than 

mathematical approach but less flexible because of the difficulty in collecting human subject data 

that involve more cost, time, and patient risk. There are also approaches that combine these two 

methods to generate breast phantoms with optimum level of flexibility and realism by selecting 

the parameters for phantom generation based on empirical data. 

SECTION 2.4: PRIOR WORK 

The Medical Imaging and Simulation (MEDIS) Lab at Delaware State University (DSU) 

and the X-ray Physics Lab at the University of Pennsylvania (UPenn) developed software for 

generating anthropomorphic breast phantoms using a mathematical approach.  The phantoms 

generated by the software are known as the DSU/Penn phantoms (Imran, 2016). DSU/Pen 

phantoms were generated through the simulation of adipose tissue, fibro glandular tissue, 

Cooper’s ligaments and skin (Imran, 2016). The characteristics of these phantoms were: 

optimized generation of phantoms, partial volume simulation, insertion of microcalcification 

automatically, and reduction in the dents, which are a dimpling of the breast tissue. The 

anthropomorphic phantoms were developed based on an octree recursive partitioning algorithm 

(Pokrajac, Maidment, & Bakic, 2011) & (Pokrajac, Maidment, & Bakic, 2012). An octree is a 

tree in which each inner node has exactly eight children. Each octree node was labeled according 

to a material, such as skin, ligament, fat or dense tissue (Imran, 2016). The phantom outline was 

characterized by the simulated skin and chest wall. Cooper’s ligaments separated the simulated 

compartments. The octree based recursive partitioning algorithm simulated phantoms with voxel 

size of up to 25 µm. 
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Figure 4. Cross-sections of a 450 cm3 phantom with voxel size 25 µm (Pokrajac, Maidment, & 

Bakic, 2011). 

 

Breast phantoms can be used in many imaging techniques such as tomosynthesis, CT, 

dual-energy mammography, ultrasound and dynamic contrast enhanced breast MRI to optimize 

the imaging procedure. 

The work in this thesis is an extension of the work done by Abdullah-Al-Zubaer Imran in 

2016 for his master’s thesis. In his work, Imran analyzed CT images of a mastectomy specimen, 

which were collected from the University of Pennsylvania, and the segmentation of the adipose 

compartments in the breast. First, the adipose compartments of the CT images of a real specimen 

were segmented, and then the volume distribution of adipose compartments was measured.  

In that previous work, the anthropomorphic breast phantoms were generated by an octree-

based recursive partitioning algorithm, as described above. Based on the simulation parameters, 
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which were voxel size, number of compartments, percentage of dense tissue, shape and 

orientation of the adipose tissue compartments, 1440 phantoms were simulated. After simulation, 

the volume distribution of 1440 phantoms adipose tissue compartments were calculated and the 

distances between the software-generated phantoms and the mastectomy CT images were 

measured. By using different distance measures, the phantoms that were closest to the 

mastectomy specimen, in size distributional sense, were selected. The Kolmogorov-Smirnov 

(KS) distance (Massey Jr, 1951), Kullback-Leibler (KL) divergence distance, and Parameterized 

Distribution Distance measures, were used for the comparison. A multilevel analysis of variance 

(ANOVAN) of the distance measurements was used to estimate the effect of simulation 

parameters on the distribution of compartment volumes.  

Dr. Pokrajac, Dr. Maidment, and Dr. Bakic published a paper titled “A Method for Fast 

Generation of High-Resolution Software Breast Phantoms” (Pokrajac, Maidment, & Bakic, 

2011), in which they described a method that achieved faster generation of phantoms with small 

voxel size. The authors compared phantoms simulated with different voxel sizes. Their new 

breast anatomy simulation improved the simulation time and simulated image quality. 

Another article related to this thesis work, “A three-dimensional time domain microwave 

imaging method for breast cancer detection by using evolutionary algorithm,” was published by 

M. Donelli, et al. in 2011 (Donelli, Craddock, Gibbins, & Sarafianou, 2011). In that paper, the 

authors presented a novel microwave method that could be used for cancer detection. Using an 

evolutionary algorithm, they minimized the cost function. Based on the magnetic resonance 

images (MRIs), they selected three-dimensional simulated breast model. Their method was able 

to reconstruct the properties of a tumor-like insertion with high accuracy. 
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In this thesis work, a genetic algorithm (GA) was used to simulate realistic breast 

phantoms. The details of this implementation are provided in the next chapter. 

Genetic algorithms are an optimization paradigm based on biological evolution. In 2016, 

Aalaei Shokoufeh, et al., used genetic algorithm-based technique for feature selection for breast 

cancer diagnosis  (Aalaei, Shahraki, Rowhanimanesh, & Eslami, 2016). Feature selection is a 

data pre-processing technique that can identify inappropriate features and remove them to 

enhance the classification accuracy.  

In 1994, James C. Bean utilized genetic algorithms that successfully resolved a range for 

sequencing and optimization problems (Bean, 1994). The problems were multiple scheduling, 

resource allocation, and quadratic assignment problem. 

Chakir Tajani, et al., used a genetic algorithm to solve the asymmetric traveling salesman 

problem. In their experiment, instead of using mutation operator, they proposed a new standard 

genetic algorithm operator, immigration, to maintain the diversity. Immigration and mutation are 

two different types of genetic algorithm operators. They are both designed to maintain the genetic 

diversity from one generation to the next generation. By using the immigration operator, entire 

individuals are generated randomly, whereas the mutation operator randomly mutates one or 

more gene values in a single individual. Experimental results have shown that the new 

immigration operator enhanced the performance of GAs on the traveling salesman problem 

(TSP). Many algorithms have been developed to find out the optimal solution for TSP problem, 

but genetic algorithm-based search solutions have been especially popular (Khan, Khan, 

Inayatullah, & Nizami, 2009). 

A good amount of research utilizing genetic algorithms for cancer diagnosis can be found 

in the literature, but not in the area of automatic generation of breast phantoms. 
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CHAPTER 3: METHODOLOGY 

SECTION 3.1: OVERVIEW 

In this research, a genetic algorithm-based search technique was utilized to minimize the 

distance between the simulated phantoms and the real breast (CT images of a mastectomy 

specimen which will be described below) in order to develop realistic phantoms. 

Anthropomorphic breast phantoms were generated using some predefined parameters. The input 

parameters were skin thickness, voxel size, number of compartments, ligament thickness, breast 

size, percent of dense tissue, combination of speeds, and a random seed generator (Imran, 2016). 

The simulation parameters can be varied to generate real phantoms. After simulation, the 

phantoms are compared with the real clinical image data. For this purpose, the adipose tissue 

compartment volumes of the clinical image data are required to be estimated. In previous work, 

the volumetric segmentation of adipose tissues compartment in 3D CT breast images of a 

mastectomy specimen was performed and analyzed (Imran, 2016). Then, the volumes of the 

segmented adipose tissues compartments were calculated. 

SECTION 3.1.1: ANTHROPOMORPHIC BREAST PHANTOM SIMULATION 

To simulate the phantoms, a custom-made simulation software was utilized. The 

software, called  “BPS,” was written in C++ (Pokrajac, Maidment, & Bakic, 2011) & (Pokrajac, 

Maidment, & Bakic, 2012). The phantoms ware generated by replicating the real breast anatomy 

such as breast skin, air, adipose tissues compartments, Cooper’s ligaments, and fibro-glandular 

tissues (Imran, 2016). The simulator was executed from the command line, with a list of 

predetermined input parameters.  Some of the parameters were kept constant, and others were 

allowed to vary. The simulation parameters are given below: 
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Table 1. Parameters for generating breast phantoms (Pokrajac, Maidment, & Bakic, 2012). 

 

The voxel size and the breast size were kept constant and predefined. Other parameters were 

varied within a range determined by an upper bound and a lower bound. 

 

 

 

 

 

 

 

Parameter Category Parameter Representation 

 

Constant 

Voxel size d 

Breast size x, y, z1, z2 

 

 

Nonconstant 

Skin Thickness skin 

Ligament Thickness t 

Percentage of Dense Tissue DPercent 

Number of Compartments c 

Shape Parameters Speeds 

Random Seed Generator Srand 
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Breast Size 

Parameter 

 

Definition 

x In the uncompressed breast, distance between chest and nipple 

y Half of the lateral dimension of the uncompressed breast 

Z1 In the uncompressed breast, the vertical distance between top and 

nipple  

Z2 In the uncompressed breast, the vertical distance between nipple and 

bottom. 

  

Table 2. Definition of breast size parameters (Pokrajac, Maidment, & Bakic, 2012). 

  

    

Figure 5. Different components of a simulated breast phantom  (Imran, 2016). 
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After simulating an anthropomorphic breast phantom, the distribution of the adipose 

tissues compartment volumes was calculated. 

The procedure for selecting the optimized parameters for breast phantoms was as follows. 

After simulating the phantoms, the compartmental volume distribution of each phantom was 

compared with the CT volume distribution. For this comparison, three different types of 

measures were used: Kolmogrov-Smirnov distance, Kullback-Leibler divergence, and 

Parameterized Distribution distance. Since our goal was to minimize the distance, if the distance 

is very low, the phantom is very close to the real breast. These measures helped us to decide on 

the realistic phantoms and their parameters. 

SECTION 3.2: OVERVIEW OF GENETIC ALGORITHMS 

A genetic algorithm (GA) is an optimization technique based on biological evolution. It 

represents the basic process of the Darwinian theory of natural selection and adaptation. In fact, 

a GA is in a way a theoretical version of an evolutionary process, and sometimes can also be 

referred to as an evolutionary algorithm (EA). GAs were proposed in various forms by a number 

of researchers, but one of the most popular versions was introduced by J. Holland in 1975. In the 

standard GA, potential solutions to the optimization problem at hand are called individuals or 

chromosomes. A genetic algorithm operates on a set of such individuals/chromosomes, which 

make up a population (Grefenstette, 1992). The individuals are encoded into a string of binary 

bits, real numbers, or characters. Each unit of an individual is known as a gene. The place where 

the gene is in the chromosome is known as locus. 
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Figure 6. A chromosomal representation in a GA. 

 

Each individual representing a potential solution to the problem at hand is evaluated by a 

fitness function that measures how good that solution is with respect to that problem. The fitness 

function is sometimes also called an objective function. In the terminology of GAs, each iteration 

in the search for the optimal solution is called a generation. At the end of each generation, the 

fittest individuals are adapted and selected for the next generation. 

Typically, a genetic algorithm will consist of the following components:        

• Population size represents the number of individuals or chromosomes in a population. If 

the population size is large, then there will be a better possibility to arrive at the optimal 

solution quicker (or in fewer number of generations). 

• Objective (fitness) function is used to calculate the fitness value of each individual. The 

fitness value represents how “fit” or how “good” the solution is with respect to the actual 

A1 0 1 1 1 0 1

A2 1 0 0 0 1 0

A3 1 1 0 0 0 1

A4 0 1 1 1 0 0

A5 1 1 0 0 0 0

Gene

Chromosome

Population
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problem. In other words, the better the fitness value, the better the solution in the search 

space. 

• Encoding determines how genes will be represented.  There are several possibilities of 

encoding: 

 

- Binary encoding: The chromosome can be represented as a binary string (0 or 1). 

                 

 

- Value encoding: The chromosome can be represented as a string of some values. 

Those values can be numbers, real numbers, or characters. 

                  

 

• Elitism implies that a number of the best chromosomes should be preserved unaffected 

for the next generation. For example, if the population size is 10 and the elitism rate is 

20%, then the top 2 fittest individuals from the current generation will be transferred to 

the next generation. 

  

Chromosome 1 0 1 1 1 0 1

Chromosome 2 1 0 0 0 1 0

Chromosome 1 1.76 2.78 8.98 4.78 3.24 4.67

Chromosome 2 AB SS BB LL LO KL
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• Crossover is a recombination process, in which highly fitting chromosomes will be 

selected as parents to generate offspring by exchanging their genetic material. There are 

different types of crossover: 

 

- Single point crossover: In this crossover, one single crossover point is selected 

randomly, and then two parents exchange their genetic information at the right side 

of that point to produce new offspring. 

 

                                                                                      

 

- Multi point crossover: In this crossover, multiple crossover points are selected 

randomly and then the two parents swap their genetic information among the 

crossover points to produce new offspring. 

 

Parent 1 0 1 1 1 0 1

Parent 2 1 0 0 0 1 0

Child 1 0 1 1 0 1 0

Child 2 1 0 0 1 0 1

Parent 1 0 1 1 1 0 1

Parent 2 1 0 0 0 1 0
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- Uniform crossover: In this crossover, each bit of the parents’ chromosomes is chosen 

in proportion to the parents’ fitness values. In essence, it is just a toss of a biased coin 

for each of the parents to decide which parent’s gene will be used to generate the new 

offspring. Each new offspring can inherit the common genes from both parents and 

at the same time, it can also receive different genes from both parents. For example, 

in a minimization problem, if parent 1 has the fitness value of 0.25, and parent 2 has 

the fitness value of 0.15, parent 2 has a higher probability to be selected to produce a 

new offspring. 

 

               

In some cases, because the crossover points are selected randomly in those two 

approaches, single or multipoint crossover may be impracticable, as they may have a low 

probability to select genes from fit chromosomes. 

Child 1 0 1 0 0 0 1

Child 2 1 0 1 1 1 0

fval weight

Parent 1 0.75 0.8 10 5 267 0.25 0.375

Parent 2 0.6 0.1 15 1 300 0.15 0.625

Biased coin toss H T T T H

Crossed child 0.75 0.1 15 1 267
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• Immigration is another kind of genetic algorithm operator. By using the immigration 

operator, the individuals are generated randomly by replacing a portion of the current 

population from the same allotment in the original population. This approach is very 

simple (Tinós & Yang., 2007). The random immigration operator gives more diversity in 

the population. If the fitness value of the local optimum of the population is much higher 

than all the fitness values of the global search space, that means that the new random 

individuals have very low survival probability. 

• Stopping criteria determine when the algorithm will end. In order to minimize (or 

maximize) the distance between the true and the target value, a genetic algorithm can 

iterate through a number of generations.  In practice, the number of generations must be 

explicitly limited. 

 

In summary, a genetic algorithm may work in the following way: 

• First, it initializes a random population. 

• Then, it calculates the fitness value of each member of the population. 

• Then, it selects the members called parents using the roulette wheel selection. Using 

the parents’ chromosomes, the offspring chromosomes are generated by applying the 

uniform crossover. 

• In addition, individuals which have the higher fitness value will be passed for the next 

generation using elitism. 

• The immigration operator can replace a portion of the current population by 

generating individuals randomly. 
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• The (crossed over) offspring, elite children, and immigrants, will replace the current 

population to form a new population for the next generation. 

• The GA will stop when it meets one of the given stopping criteria, such as stall 

generations, stall time limit, fitness limit, or the maximum number of generations. 

SECTION 3.3: PROPOSED ALGORITHM 

This algorithm proposed in this thesis first started with initializing a selection of 

population. The population was selected randomly. Table 3 shows an example encoding of an 

individual in a population.  

 
 

Table 3. Encoding of an individual. 

d - Voxel size 

x, y, z1 & z2 – Breast size 

sk – Skin thickness 

c - Number of compartments 

t - Ligament thickness 

DP - Percent of Dense Tissues 

MnS - MinSpeed 

MxS - MaxSpeed 

MnR - MinRatio 

MxR - MaxRatio 

SR - Random seed generator  
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The voxel and breast sizes were fixed, and the other parameters values were given upper 

bound and lower bound, which are shown in Table 5 (next section). 

The next step was calculating the fitness value. Since the objective here is to minimize 

the distances, the lower the fitness value (distance), the better the individual. The next two steps 

in the algorithm were crossover and immigration. In our experiment, instead of using the 

traditional single point crossover, we used parameterized uniform crossover (Wang & Uzsoy, 

2002). 

In uniform crossover, two parents are first selected randomly, then a biased coin toss is 

applied to each parent’s gene to decide which parent would pass its genetic information. In our 

analysis, we created a random number (that is the same concept as tossing a biased coin) and 

then compared each of the random numbers with the first parent’s weight to decide whether that 

parent’s gene would be considered to produce the offspring. If the random number is less than 

the first parent’s weight, then the first parent’s gene will pass. Otherwise, parent 2 will pass its 

genetic information to generate the new offspring. Uniform crossover lets us to influence the 

search space more strongly to get a better solution because there is a higher chance of selecting 

genes for the offspring from parents which have better fitness values (Wang & Uzsoy, 2002). 

Instead of using the traditional mutation, in this experiment, we used the immigration 

operator for diversity because it increased the genetic diversity level of the population by 

randomly generating new members of the population from the same distribution of the original 

population (Tinós & Yang., 2007). 
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Three different types of fitness function were used in this experiment for distance 

measurement: 

1. Kolmogrov-Smirnov (KS) distance: The KS statistic quantifies the maximum distance 

between the empirical distribution function of the data under study and the cumulative 

distribution function (CDF) of the reference distribution, or between the CDFs of two datasets. 

In order to compare the datasets from two samples, we estimate their CDFs. Then, the KS 

distance is the largest absolute difference between the two empirical CDFs evaluated across 

sorted data points. The KS distance is distribution-free and symmetric. Its value is greater than 

or equal to zero. It is equal to zero when two distributions are identical (Marsaglia, Tsang, & 

Wang, 2003). 

2. Kullback-Leibler (KL) divergence: The KL distance measures how one probability 

distribution is different from a reference probability distribution. Suppose P and Q are two 

distribution functions of two random variables x and y.  Then the KL distance is the mathematical 

expectation of the logarithmic difference between two probabilities distributions, P and Q, when 

expectation is taken over the probabilities. The KL distance is always non-negative. 

3. Parameterized Distribution Distance (PDD): It is the distance between two 

compartmental size distributions of mastectomy CT and a phantom. Previously, the distribution 

parameters from the adipose compartment volume distribution of mastectomy CT and each of 

the software generated phantoms were calculated (Imran, 2016). The weighted sum of the 

normalized absolute differences of the parameters was calculated as follows: 

Dam = Arithmetic mean 

Dgm = Geometric mean 

Dhm = Harmonic mean 
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Dsd = Standard deviation 

Dmd = Median value 

Dmo = Mode element 

Dmx = Maximum element 

Dmn = Minimum element 

Dsk = Skewness 

Dkt = Kurtosis 

 

Table 4 shows the distribution parameters in the order of priority, and the corresponding 

weight values are assigned to them (Imran, 2016). 

 

Table 4. Distribution parameters and their corresponding weight values (Imran, 2016). 

  

Parameters Assigned Weights 

Dam 1 

Dgm 2 

Dhm 3 

Dsd 4 

Dmd 5 

Dmo 6 

Dmx 7 

Dmn 8 

Dsk 9 

Dkt 10 
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Figure 7 outlines the framework of the proposed method, and the pseudo-code for the 

genetic algorithm is presented below: 

 

Required parameters: Crossover rate pc, Elite proportion pe, and immigration 

rate pi  

1. Initialize random population P 

2. Calculate the fitness value of each individual of the population (fval) 

3. while (stopping criteria of the GA not satisfied) do: 

4.         Replace a fraction of the population P by the elite proportion pe     

5.         for i ← 1 to number of the population size do: 

6.                 Pnew.individual(i) ← selection of the population (P,i) 

7.         end for 

8.         Elitism (Pnew, pe) 

9.         Crossover (Pnew, pc) 

10.        Immigration (Pnew, pi) 

11.        Generate new population Pnew 

12.        P ← Pnew 

13. end while 
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Figure 7. Flow chart of the proposed algorithm. 

The main objective of this research was to focus on the simulation of realistic 

anthropomorphic breast phantoms. By using a genetic algorithm-based search technique to 

optimize the parameters selection process for generation of realistic phantoms, the approach 

increases the accuracy level by minimizing the distance between the simulated phantom and a 

real CT image. For this purpose, the phantom input parameters are varied by the genetic 

algorithm during the process of generating phantoms. Based on the set of prefixed input 

parameters, the phantoms are developed. 
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CHAPTER 4: EXPERIMENTAL SET-UP 

SECTION 4.1: GA SET-UP 

Our goal was to minimize the fitness values. In our experiments, the population size 

chosen was 30, and the stall generation was set to 4. 60% of the population was generated by 

uniform crossover (Wang & Uzsoy, 2002), 20% of the population was generated by 

immigrating new solutions directly, and 20% of the population was the best chromosomes 

phantoms from the previous generation (elitism). These parameters were empirically chosen 

based on preliminary tests, and worked well by balancing the computational time and 

performance of the GA. Moreover, each genetic algorithm run was replicated three times with 

different initial random seeds. 

The initial population was generated by taking the best solution from prior work (Imran, 

2016) as one chromosome, and the rest of the chromosomes were generated randomly for two 

different measures: the Kolmogorov-Smirnov distance and the Kullback-Leibler divergence. For 

the third measure, the Parameterized Distribution Distance, two different types of experiments 

were used. In the first experiment, the initial population was generated by taking the best solution 

from Imran’s work as one chromosome and other chromosomes were generated randomly. In the 

second experiment, the whole population was generated randomly.   

As mentioned earlier, a stall generation of 4 was used as one of the stopping criteria. A 

stall generation is the number of generations, within the span of which none of the solutions 

generated by the GA have not improved. Accordingly, here, if there is no improvement in the 

quality of the breast phantoms in 4 consecutive generations, the stopping criterion is met, and the 

GA will terminate.  
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An Intel(R) Xeon(R) machine with CPU 3.50 GHz and memory size 64 GB was used for 

the experiments described in this thesis. The hardware platform was Ubuntu OS Version 18.04.1. 

The experiments used Matlab 2018b as the computational engine for implementing the GA. To 

speed up the GA, multithreading was used on all 4 cores available on the system. The 

parallelization allowed to simulate 4 phantoms at the same time. Since the population size was 

30, it took around 30 minutes to simulate all of the 30 phantoms in a generation. Each of the 30 

phantoms was then compressed (by using Imran’s code), and its fitness value (KS/KL) was 

measured. This process of compressing and computing the fitness value for each of the 30 

phantoms took approximately another one hour. Accordingly, the total time to run a single 

generation was around 1.5 hours. The parallelizing reduced the computational time by a factor 

of 3.5, thus reducing the computational burden of the experiments. 

SECTION 4.2: DATA 

The dataset used in this experiment was the CT image data of a mastectomy specimen 

which was provided from the University of Pennsylvania Health System (UPHS) by Dr. Bakic 

and Dr. Pokrajac. By varying the radiation dose during the CT scan, the quality of the CT images 

could be improved (Imran, 2016). Previously, the mastectomy was collected from an unidentified 

contributor. The size of the sample was D-cup and the volume was approximately 907 cm3 

(Imran, 2016). The sample was separated from the body and then it was protected in formalin. 

The CT imaging process was performed by keeping the sample on an air pocket. 

The simulated phantom’s volume would be approximately 930 cm3, which means that the 

size would be D-cup breast, so that the simulated phantom and the mastectomy CT image would 

be of the same cup sizes. To simulate the phantoms, fourteen different types of parameters were 

utilized during the simulation process. Nine of them were varied while the other five were fixed. 
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Each voxel was predefined to 0.01 cm. The lower bound value of the simulated breast skin 

thickness was predefined 0.12 cm and the upper bound was set to 0.15 cm. The lower bound and 

upper bound values for the simulated Cooper’s ligament thickness were set to 0.04 cm and 0.06 

cm, respectively. 

Category Parameter Values 

 

 

Constant 

 

 

Voxel size (d) 0.01 cm3 

Breast Size, x 6.414 cm 

Breast Size, y 6.414 cm 

Breast Size, z1 15.394 cm 

Breast Size, z2 6.414 cm 

 

 

Nonconstant 

 

 

 

 

Skin thickness (skin) 0.12 cm -0.15 cm 

Ligament thickness (t) 0.04 cm -0.06 cm 

Percent of Dense Tissues (DPercent) 0-10 

Number of Adipose Tissue Compartments 167-1000 

MinSpeed (Shape Parameters) 0.01-1 

MaxSpeed (Shape Parameters) 1-100 

MinRatio (Shape Parameters) 0.25-1 

MaxRatio (Shape Parameters) 1-4 

SRand (Random Seed Generator) 1000-10000 

 

Table 5. Simulated phantom parameters, which were predefined by Dr. David D. Pokrajac and 

Dr. Predrag R. Bakic. 
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CHAPTER 5: RESULTS 

Our goal was to minimize the distance between the simulated phantom and the 

mastectomy specimen’s CT images, and to compare the results obtained using the genetic 

algorithm with the results of the earlier work (Imran, 2016). 

SECTION 5.1: KOLMOGOROV-SMIRNOV DISTANCE BASED EVALUATION OF 

THE GA 

Figure 8 shows the evolution of the Kolmogorov-Smirnov distance as the genetic 

algorithm progresses. The average and best value of Kolmogorov Smirnov distance in each 

generation decreases significantly as the genetic algorithm progresses. This happens because 

genetic operators of crossover and immigration select better sets of parameters to simulate the 

phantoms as the algorithm progresses. The best distance value remains the same for the last four 

generations, as the stall generation limit was chosen to be 4.  

 

Figure 8. Evolution of the best and average fitness values for the Kolmogorov Smirnov 

distance for three replications. 
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A total of 810 phantoms were simulated and evaluated using this distance measure. The best KS 

value obtained from the GA was 0.1140, which was better than the previously reported value of 

0.1457. Table 6 compares the simulation parameters of the best phantom obtained using the GA 

with the best phantom parameters reported in the previous study. We note that the “Skin 

thickness,” “Number of compartments,” “Ligament thickness,” and “Percentage of Dense 

Tissue” parameters are different, and result in a better simulated phantom, with a lower KS 

distance. 

Parameter 
Experimental 

Design Approach 

for KSD 

Genetic Algorithm      

Approach for KSD 

Breast Size (cm3) 930 930 

Voxel Size (mm) 0.01 0.01 

Skin Thickness (cm) 0.12 0.13 

Number of Compartments 1000 789 

Ligament Thickness (cm) 0.04 0.07 

Percentage of Dense 

Tissue 

5 0 

Shape Parameters 0.01  100  1  1 0.01  100  1  1 

Random Seed 3000 8635 

KS Distance 0.1457 0.114 

 

Table 6. Comparison between the previous approach (Imran, 2016) and the proposed approach 

for the KSD distance. 
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SECTION 5.2: KULLBACK-LIEBLER DISTANCE BASED EVALUATION OF THE 

GA 

To evaluate GA performance on minimizing Kullback-Liebler (KL) divergence, we ran 

the algorithm using KL divergence as the fitness function. Figure 9 shows the evolution of the 

KL divergence average and best fitness values for each of the three replications of the genetic 

algorithm. 

 

Figure 9. Evolution of the best and average fitness values for the Kullback-Liebler divergence 

distance for three replications. 

 

We note that there is a significant variation in the average KL divergence as the GA 

progresses. Since the stall generation number used was 4, the best value remained the same for 

the last four generations in each of the replications, after which the genetic algorithm stopped. 
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The GA simulated a total of 990 phantoms, and the best KL distance from the GA was 

0.0540, which was better than the previously reported best KL distance value of 0.1108.  Table 

7 compares the simulation parameters of the best phantom obtained using the GA with the best 

phantom parameters reported in the previous study. We note that the “Number of compartments,” 

“Ligament thickness,” and “Percentage of Dense Tissue” parameters are different and result in a 

better simulated phantom in terms of its KL divergence value. 

Parameter Experimental Design 

Approach for KL 

Genetic Algorithm      

Approach for KL 

Breast Size (cm3) 930 930 

Voxel Size (mm) 0.01 0.01 

Skin Thickness (cm) 0.15 0.15 

Number of Compartments 500 584 

Ligament Thickness (cm) 0.06 0.07 

Percentage of Dense Tissue 0 8 

Shape Parameters 0.01  100  1  1 0.01  100  1  1 

Random Seed 3000 9505 

KLD Distance 0.1108 0.054 

 

Table 7. Comparison between the previous approach (Imran, 2016) and the proposed approach 

for the KL distance. 
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SECTION 5.3: PARAMETERIZED DISTRIBUTION DISTANCE BASED 

EVALUATION OF THE GA  

To evaluate the GA’s performance on minimizing the Parametrized Distribution Distance 

(PPD), we ran two experiments of the genetic algorithm using PPD as the fitness function. 

In the first experiment, the initial population was generated by taking the best solution 

from prior work as one chromosome, while the other chromosomes were generated randomly. 

Figure 10 shows the evolution of the PPD average and best values for each of the three 

replications of the GA seeded with the best solution from prior work. 

 

Figure 10. Evolution of the best and average fitness values for the Parameterized Distribution 

Distance for three replications, experiment 1. 

 

Note that although the average value decreased as the GA progressed, the best value 

remained the same for all five generations. Each replication stopped after 5 generations as none 

of the replications could obtain a better value than the one with which they were seeded. 
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Accordingly, in this case, the GA failed to improve the best value obtained from the prior work 

(Imran, 2016). 

To investigate further, a second experiment was ran, in which the initial population of the 

GA was generated randomly, without using the best solution from prior work. Figure 11 shows 

the evolution of the best and average distance values obtained from the GA for each of the three 

replications.  

 

Figure 11. Evolution of the best and average fitness values for the Parameterized Distribution 

Distance for three replications, experiment 2. 

 

In this case, although the genetic algorithm took longer because it took more generations 

to stop, it also could not improve upon the best value. The best value obtained using this method 

was 4.8948 which is worse when compared with the prior best value of 4.809. 

This result is perhaps not surprising because PDD was calculated on weighted summary 

statistics of the simulated and actual phantoms, which makes it more challenging to optimize. 
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Table 8 shows the simulation parameters obtained for the best phantom simulated using 

both the prior work and the genetic algorithm (seeded with the best solution). Since both 

approaches return the same best phantom for PDD, the parameters are also same. 

 

Parameter  Experimental Design 

Approach for PDD 

Genetic Algorithm      

Approach for PDD 

Breast Size(cm3) 930 930 

Voxel Size(mm) 0.01 0.01 

Skin Thickness(cm) 0.12 0.12 

Number of Compartments 1000 1000 

Ligament Thickness(cm) 0.04 0.04 

Percentage of Dense 

Tissue 

10 10 

Shape Parameters 0.01  100  0.25   4 0.01  100  0.25   4 

Random Seed 1000 1000 

PD Distance 4.809 4.809 

 

Table 8. Comparison between the previous approach (Imran, 2016) and the proposed approach 

for the Parameterized Distribution Distance. 

 

SECTION 5.4: STATISTICAL ANALYSIS TO IDENTIFY PARAMETERS 

SIGNIFICANTLY IMPACTING THE FITNESS OF SOLUTIONS 

The genetic algorithm described in the previous sections simulated many phantoms in its 

process of finding increasingly better phantoms. Our secondary objective was to determine which 

parameters significantly impact the distance measures (KS, KL divergence) in order to help the 

decision maker with tuning those parameters to simulate more realistic phantoms. Multiple linear 
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regression was used to analyze the impact of the simulation parameters on the distance measures. 

Multiple linear regression was calculated for two distance measures: the KS and KL divergence.  

Table 9 shows the independent variables used in the multiple regression model, along 

with their ranges used in the simulation, and Tables 10 and 11 show the results of the analysis 

for the Kolmogorov-Smirnov Distance and the Kullback-Liebler Distance, respectively. 

 

Parameter  Value 

Skin Thickness (0.12-0.15) cm 

Number of Compartments 167-1000 

Ligament Thickness (0.04-0.06) cm 

Percentage of Dense Tissue 0-10 

MinSpeed 0.01-1 

MaxSpeed 1-100 

MinRatio 0.25-1 

MaxRatio 1-4 

Random Seed Generator 1000-10000 

 

Table 9. Parameters and ranges of the values used in the regression model. 
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Variables Estimated 

Coefficients 

Standard 

Error 

tStat pValue 

Intercept 0.43368 0.042203 10.276 2.3726e-23 

Skin Thickness -0.00093869 0.26934 -0.0034851 0.99722 

Number of 

Compartments 

-0.00024116 1.1327e-05 -21.291 4.8069e-80 

Ligament Thickness -0.71786 0.16142 -4.4471 9.9328e-06 

Percentage of Dense 

Tissue 

0.00066477 0.00078453 0.84735 0.39705 

MinSpeed 0.0074256 0.0092353 0.80404 0.42161 

MaxSpeed -0.0003481 9.479e-05 -3.6723 0.00025632 

MinRatio -0.00074616 0.0096817 -0.077068 0.93859 

MaxRatio 0.02849 0.0025186 11.312 1.2612e-27 

Random Seed 

Generator 

-4.5662e-06 8.9568e07 -5.098 4.2879e-07 

Number of observations: 810, Error degree of freedom: 800 

Root Mean Squared Error: 0.0599 

R-squared: 0.654, Adjusted R-squared 0.65 

F-statistic vs. constant model: 168 

p-value= 9.98e-178 

 

Table 10. Multiple regression results for the Kolmogorov-Smirnov Distance. 

  



www.manaraa.com

45 

 

 

The multiple regression model shown in Table 10 (above) regresses the independent 

variables on the Kolmogorov-Smirnov Distance. We note that the “Number of compartments,” 

“Ligament thickness,” “MaxSpeed,” and “MaxRatio” parameters are all statistically significant 

at 5% level. The coefficients of all these variables are negative implying that the higher the value 

of these variables, the lower the KS distance value of a phantom. This implies that phantoms 

with lower KS values can be generated by using higher values of these variables. 

The multiple regression output shown in Table 11 (below) regresses the independent 

variables on the Kullback-Liebler divergence as the response variable. From the regression 

output, we note that the coefficient of the “Number of compartments” parameter is -0.013343, 

with the corresponding p-value of 0.00012267. We can say that the number of compartments is 

significant at the 5% significance level. Since the coefficient for this parameter is negative, the 

analysis indicates that the larger the number of compartments, the better phantoms, with lower 

Kullback-Liebler divergence values, can be simulated. 

Similarly, the coefficient of the shape parameter (max ratio) has a coefficient of 5.4032 

and p-value of 0.0076209. Since this p-value is less than 0.05, the shape parameter is also 

significant. The positive sign of the coefficient indicates that the lower this max ratio, the better 

phantoms with lower Kullback-Liebler divergence values can be simulated. 

Comparing multiple regression outputs of both KS distance and KL divergence, we note 

that the number of compartments and max ratio were significant in both. However, the sign for 

the max ratio was opposite between the two, which makes it difficult to interpret, as max ratio 

seems to impact KS distance or KL divergence in different ways. The number of compartments 

variable had negative sign in both outputs, and seemed to be the factor which should be 

emphasized by the decision maker when trying to simulate breast phantoms.  
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Variables Estimated 

Coefficients 

Standard 

Error 

tStat pValue 

Intercept 0 0 NaN NaN 

Skin Thickness -17.636 41.011 -0.43003 0.66727 

Number of 

Compartments 

-0.013343 0.0034602 -3.8562 0.00012267 

Ligament Thickness 32.852 47.1 0.69749 0.48566 

Percentage of Dense 

Tissue 

0.06851 0.14998 0.45678 0.64793 

MinSpeed 1.2558 7.7605 0.16182 0.87148 

MaxSpeed 0.0059346 0.073919 0.080285 0.93603 

MinRatio 3.1839 7.8585 0.40515 0.68545 

MaxRatio 5.4032 2.0207 2.674 0.0076209 

Random Seed Generator -0.000171 0.00017643 -0.96923 0.33267 

Number of observations: 990, Error degree of freedom: 981 

Root Mean Squared Error: 14.6 

R-squared: 0.135, Adjusted R-squared 0.128 

F-statistic vs. constant model: 19.2 

p-value= 5.47e-27 

 

Table 11. Multiple regression results for the Kullback-Liebler Distance. 

With the KS distance used for fitness evaluation, the regression coefficients for both skin 

thickness and ligaments thickness were negative. There is no, or a very negligible, effect of skin 

thickness on minimizing the distance between the simulated and experimental distributions. The 

estimated regression coefficient (standard error) for skin thickness was -0.00093869 (0.26934), 
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with a p-value ≈ 0.99722. However, there was a highly significant impact of ligament thickness 

on this fitness function, with the estimated regression coefficient (standard error) = -0.71786 

(0.16142), p-value ≈ 0.0000099.  

With the KL distance used for fitness evaluation, the analysis identified a statistically 

non-significant negative coefficient for the skin thickness parameter (-17.636, p-value ≈ 

0.66727), and a statistically non-significant positive coefficient for the ligament thickness 

parameter (32.852, p-value ≈ 0.48566). Although the raw absolute values of these two 

estimations are relatively large, the corresponding standardized forms (t-score) are relatively 

small because of the large variability. Also, the positive coefficient for ligament thickness 

indicates an increase in the distance between the simulated and experimental distributions for a 

unit increase in the ligament thickness, which is unexpected, as per the breast anatomical 

structure, an increase in the ligament thickness is likely to increase the risk of breast malignancy. 

Therefore, an estimation of a negative coefficient for the ligament thickness would be more 

realistic for minimizing the distance between the simulated and experimental distributions. 

In summary, it appears that the ligament thickness parameter has a biologically feasible 

impact on minimizing the distance between the simulation and the experimental data using the 

KS distance. This is not true with respect to the KL distance. These results are consisted with the 

findings in Imran’s original work, in which only the ligament thickness using the KS distance 

was reported as having a significant effect on the fitness function. This is also consistent with 

our GA results where we noticed that the average fitness value for the KS distance is more stable 

than the average fitness value of the KL divergence. Accordingly, the KS distance seems to be a 

better measure as compared to the KL divergence. 
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CHAPTER 6: CONCLUSION AND FUTURE WORK 

In this research, we used a genetic algorithm to search for simulation parameters that 

would generate better simulated breast phantoms. The main purpose of this approach was to 

evaluate the efficiency of genetic algorithms in searching for near-optimal simulation parameters.  

By utilizing parametrized uniform crossover, instead of the traditional one-point 

crossover, the genetic algorithm was able to produce better solutions, as measured by the KS and 

KL divergence similarity metrics. However, the GA could not generate better solutions for the 

PDD measure, as PDD turned out to be a difficult function to optimize. This phenomenon could 

be explained by the fact that PDD is computed by using the summary statistics of the simulated 

and the actual phantoms, and so does not rely fully on all voxels of the phantoms. Hence, one 

future research direction could be to evaluate the effectiveness of other meta-heuristics, such as 

simulated annealing or particle swarm optimization, to search for near-optimal simulation 

parameters to optimize specifically the PDD function, as in the literature these meta-heuristics 

are often described as working well for noisy functions similar to PDD. 

Using the data generated by the genetic algorithm, we also evaluated the phantom 

parameters that significantly impacted the simulation. In our experiments, we saw that the 

number of compartments was a significant variable for anthropomorphic phantom generation as 

it impacted both the KS and KL divergence measures significantly. However, more carefully 

designed tests would be needed to substantiate this hypothesis. In future work, this hypothesis 

should be tested more rigorously, and if determined to be true, it would be interesting to 

concentrate the efforts on those parameters, which appear to be most significant for phantom 

generation. 
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Through the work described in this thesis, we also realized that using KL, KS, and PDD 

separately as fitness measures in the GA resulted in different phantom parameters, which is 

consistent with earlier findings by Imran (Imran, 2016). One future direction could be to evaluate 

trade-offs between these three fitness measures. Based on these findings, a multi-objective 

genetic algorithm, similar to the single objective genetic algorithm used in this work, could be 

developed to search for the best set of simulation parameters that optimizes these three objectives 

simultaneously. 
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